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Gaussian Processes

Probabilistic formulation provides uncertainty
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Bayesian Optimization

Automatic explore-exploit tradeoff
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From Bayesian Optimization to Bayesian Interactive Decision-making
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Pathwise Conditioning

prior term

+
data term

=
posterior Gaussian process

(f ∣ y)(⋅) = f(⋅) + v k(x , ⋅)
i=1

∑
N

i i v = K (y − f(x))xx
−1

: representer weightsv : canonical basis functionsk(x , ⋅)i
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Conjugate Gradients

Refinement of gradient descent for solving linear systems A b−1

Convergence rate is much faster than gradient descent
Precise rate depends mainly on cond(A)
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Numerical Stability

Condition number: quantifies difficulty of solving A b−1

cond(A) =
ε→0
lim

δ ≤ε b∥ ∥ ∥ ∥
sup

ε A b∥ −1 ∥2

A (b + δ) − A b∥
∥ −1 −1

∥
∥

2 =
λ (A)min

λ (A)max

: eigenvaluesλ , λmin max
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Condition Numbers of Kernel Matrices

Are kernel matrices always well-conditioned? No.

One-dimensional time series on grid: Kac–Murdock–Szegö matrix

K =xx ⎝
⎛ 1

ρ

⋮
ρn−1

ρ

1

⋮
ρn−2

ρ2

ρ

⋱
ρn−3

…
…

⋱
…

ρn−1

ρn−2

⋮
1

⎠
⎞

for which ≤1−2ρ−2ρε+ρ2
1+2ρ+2ρε+ρ2

cond(K ) ≤xx (1−ρ)2
(1+ρ)2

, where .ε =
N+1

π2
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Condition Numbers of Kernel Matrices

Problem: too much correlation  points too close by⇝
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Minimum Separation

Separation: minimum distance between distinct  and zi zj

Proposition. Assuming spatial decay and stationarity, separation controls 
uniformly in .

cond(K )zz

M

Idea: use this to select numerically stable inducing points
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Have you tried stochastic gradient descent?

Conventional wisdom in deep learning:
SGD variants are empirically often the best optimization algorithms
ADAM is extremely effective, even on non-convex problems
Minibatch-based training critical part of scalability

Why not try it out for Gaussian process posterior sample paths?
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Gaussian Process Posteriors via Randomized Optimization Objectives

Split into posterior mean and uncertainty reduction terms

(f ∣ y)(⋅) = f(⋅) + K (K + Σ) (y − f(x) − ε)(⋅)x xx
−1

= f(⋅) + v k(x , ⋅) + α k(x , ⋅)
i=1

∑
N

i
∗

i

i=1

∑
N

i
∗

i

where

v∗

α∗

= + v K v
v∈RN

arg min
i=1

∑
N

Σii

(y − K v)i x xi

2
T

xx

= + α K α.
α∈RN

arg min
i=1

∑
N

Σii

(f(x ) + ε − K α)i i x xi

2
T

xx
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Gaussian Process Posteriors via Randomized Optimization Objectives

v∗

α∗

= + v K v
v∈RN

arg min
i=1

∑
N

Σii

(y − K v)i x xi

2
T

xx

= + α K α.
α∈RN

arg min
i=1

∑
N

Σii

(f(x ) + ε − K α)i i x xi

2
T

xx

First term: apply mini-batch estimation
Second term: evaluate stochastically via random Fourier features
Variance reduction trick: shift  into regularizerεi

Use stochastic gradient descent with Polyak averaging
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Stochastic Gradient Descent

 It works better than conjugate gradients on test data? Wait, what?
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What happens in one dimension?

Performance depends on data-generation asymptotics
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What happens in one dimension?

SGD does not converge to the correct solution,
but still produces reasonable error bars  implicit bias?⇝
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Convergence: Euclidean and RKHS Norms

No convergence in representer weight space
or in the reproducing kernel Hilbert space

Good test
performance
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Convergence: Euclidean and RKHS Norms

Performance not significantly affected by noise
Unstable optimization problem  benign non-convergence⇝  implicit bias⇝
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Where does SGD's implicit bias affect predictions?

Error seems to concentrate away from data, but not too far away?
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Where does SGD's implicit bias affect predictions?

Interpolation region

21



Where does SGD's implicit bias affect predictions?

Extrapolation region
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Where does SGD's implicit bias affect predictions?

Far-away region
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The Far-away Region

(f ∣ y)(⋅) = f(⋅) + v k(x , ⋅)
i=1

∑
N

i i

Kernel decays in space  predictions revert to prior⇝
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The Interpolation Region

Low approximation error where data is dense
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The Interpolation Region

Idea: maybe SGD (a) converges fast on a subspace, and (b) obtains
something arbitrary but benign on the rest of the space?

Let K =xx UΛUT  be the eigendecomposition of the kernel matrix.
Define the spectral basis functions

u (⋅) =(i) k(x , ⋅).
j=1

∑
N

λi

Uji
j
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The Interpolation Region

Large-eigenvalue spectral basis functions concentrate on data
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The Interpolation Region

Proposition. With probability , we have

: learning
rate

: noise
variance

: kernel matrix
eigenvalues

: gradient's sub-Gaussian
coefficient

1 − δ

proj μ − proj μ ≤∥
∥

u(i) f ∣y u(i) SGD∥
∥

Hk
+ G .

λ ti

1 (
ησ2

y∥ ∥2 2ησ log2

δ

N )
η σ2 λi G

SGD converges fast with respect to top spectral basis functions

28



The Interpolation Region

Where do the top spectral basis functions concentrate?
Idea: lift Courant–Fischer eigenvector characterization to the RKHS

Proposition. The spectral basis functions can be written

u (⋅)(i) = .
u∈Hk

arg max { u(x )
i=1

∑
N

i
2 :

u = 1∥ ∥Hk

⟨u, u ⟩ = 0(j)
Hk

, ∀j < i
}

Spectral basis functions concentrate on the data as much as possible, while
remaining orthogonal to those with larger eigenvalues
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The Extrapolation Region

High error: where small-eigenvalue spectral basis functions concentrate
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SGD's implicit bias for Gaussian processes

Implicit bias: SGD converges quickly near the data,
and causes no harm far from the data

Error concentrates in regions (a) without much data,
which also (b) aren't located too far from the data:

Lack of data  predictions are mostly arbitrary⇝
Empirically: functions shrink to prior faster than exact posterior

Benign non-convergence  robustness to instability⇝
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Performance

Conjugate gradients: non-monotonic test error, in spite of monotonic convergence
SGD: almost always monotonic decrease in test error
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Performance

Strong predictive performance at sufficient scale
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Parallel Thompson Sampling

Uncertainty: strong decision-making performance
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Reflections

Numerical analysis conventional wisdom:
Don't run gradient descent on quadratic objectives

It's slow, conjugate gradient works much better
If CG is slow then your problem is unstable

Unstable problems are ill-posed, you should reformulate

This work: a very different way of looking at things
Don't solve the linear system approximately if the solution isn't inherently needed
Instead of a well-posed problem, a well-posed subproblem might be good enough
Try SGD! It might work well, including for counterintuitive reasons
A kernel matrix's eigenvectors carry information about data-density

To see this, adopt a function-analytic view given by the spectral basis functions
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